Polyunsaturated fatty acid enrichment enhances endothelial cell-induced low-density-lipoprotein peroxidation.
نویسندگان
چکیده
Oxidative modification of low-density lipoprotein (LDL) is an important feature in the initiation and progression of atherosclerosis. LDL modification by endothelial cells was studied after supplementation of the cells with oleic acid and polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series. In terms of the lipid peroxidation product [thiobarbituric acid reactive substances (TBARS)] content and diene level of the LDL particle, oleic acid had no significant effect, and linoleic acid was poorly effective. Gamma linolenic acid (C18:3,n-6) and arachidonic acid (C20:4,n-6) increased by about 1.6-1.9-fold the cell-mediated LDL modification. PUFA from the n-3 series, alpha linolenic acid (C18:3,n-3), eicosapentaenoic acid (C20:5,n-3) and docosahexaenoic acid (C22:6,n-3), induced a less marked effect (1. 3-1.6-fold increase). The relative electrophoretic mobility of the LDL particle and its degradation by macrophages were enhanced in parallel. Concomitantly, PUFA stimulated superoxide anion secretion by endothelial cells. The intracellular TBARS content was also increased by PUFA. Comparison of PUFA from the two series indicates a good correlation between LDL oxidative modification, superoxide anion secretion and intracellular lipid peroxidation. The lipophilic antioxidant vitamin E decreased the basal as well as the PUFA-stimulated LDL peroxidation. These results indicate that PUFAs with a high degree of unsaturation of the n-6 and n-3 series could accelerate cell-mediated LDL peroxidation and thus aggravate the atherosclerotic process.
منابع مشابه
Comparison between High-PUFA and Low-PUFA Fats on Lipid Peroxidation and LDL Oxidation
This study was conducted to determine the effects of a low polyunsaturated fatty acid (PUFA) 21 diet versus a highPUFA diet on lipid peroxidation and on low density and very low density lipoprotein (LDL + VLDL) oxidation in vivo. Rats were fed 10% beef tallow (BT) or 10% soybean oil (SO) diet for 21 weeks. Lipid peroxidation was measured by assessing urinary 24 excretions of secondary lipid per...
متن کاملCytoprotective Effects and Mechanisms of Δ-17 Fatty Acid Desaturase in Injured Human Umbilical Vein Endothelial Cells (HUVECs)
BACKGROUND The beneficial effect of Δ-17 FAD is poorly understood. The aim of this study was to investigate the protective mechanism of fatty acids against atherosclerotic (AS) damage induced by oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs), and to identify the molecular mechanisms involved. MATERIAL AND METHODS The ox-LDL was used to induce lipoto...
متن کاملPlasma membrane enrichment with cis-unsaturated fatty acids enhances LDL metabolism in U937 monocytes.
The mechanism by which dietary cis-unsaturated fatty acids lower low density lipoprotein (LDL) cholesterol is unknown. Because cis-unsaturated fatty acids incorporated into cell membranes increase membrane fluidity and, as a result, can alter membrane-dependent cell functions, we examined LDL binding, uptake, and degradation in upregulated U937 monocytes enriched in membrane oleate, a monounsat...
متن کاملAtherosclerosis, Dyslipidemia, and Inflammation: The Significant Role of Polyunsaturated Fatty Acids
Phospholipids play an essential role in cell membrane structure and function. The length and number of double bonds of fatty acids in membrane phospholipids are main determinants of fluidity, transport systems, activity of membrane-bound enzymes, and susceptibility to lipid peroxidation. The fatty acid profile of serum lipids, especially the phospholipids, reflects the fatty acid composition of...
متن کاملThe low density lipoprotein receptor is not necessary for maintaining mouse brain polyunsaturated fatty acid concentrations.
The brain cannot synthesize n-6 or n-3 PUFAs de novo and requires their transport from the blood. Two models of brain fatty acid uptake have been proposed. One requires the passive diffusion of unesterified fatty acids through endothelial cells of the blood-brain barrier, and the other requires the uptake of lipoproteins via a lipoprotein receptor on the luminal membrane of endothelial cells. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 336 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1998